TRANSACTIONS

OF THE

AMERICAN MATHEMATICAL SOCIETY

VOLUMES 1-10 1900-1909

INDICES

PUBLISHED BY THE SOCIETY
LANCASTER, PA., AND NEW YORK
1909

CONTENTS.

PA	GE.
INDEX BY AUTHORS	5
INDEX BY SUBJECT MATTER	19
ARRANGEMENT OF THE INDEX BY SUBJECT MATTER.	
A. Logical Analysis of Mathematical Disciplines	19
B. Algebra.	
B1. Rational Functions. Theory of Equations. Determinants. Sym-	
metric Functions	20
B 2. Algebraic Forms. Invariants. (Cf. F 2.)	20
B 3. Linear Associative Algebra. Hypercomplex Number Systems. Fields.	
(Cf. F1.)	
B 4. Algebra of Logic	21
C. Theory of Numbers	21
(Cf. E1, E2.)	
D. Analysis.	
D1. Functions of Real Variables. Point Sets	
D 2. Functions of Complex Variables	
D 3. Particular Functions	
D 4. Ordinary Differential Equations. (Cf. D 3, F 4.)	
D 5. Partial Differential Equations	
D 6. Differential Forms	
D 7. Calculus of Variations	
D 8. Difference Equations	27
E. Groups.	
E 1. Discrete Groups in General. (Cf. E 2.)	27
E 2. Linear Groups in Arbitrary or Special Fields	29
E 3. Continuous Groups. (Cf. E 2, F 1, F 3, G 3.)	30
F. Geometry.	
F 1. Synthetic Geometry. Non-Euclidian Geometry. Geometry of n Di-	
mensions. Analysis Situs. (Cf. D 1, D 2.)	30
F 2. Algebraic Geometry. Algebraic Curves and Surfaces. (Cf. B 2, D 3, E 2, F 1, F 4, F 5.)	31
F 3. Geometry of Special Space-Elements	
F 4. Differential Geometry. (Cf. D 6.)	
F 5. Geometric Transformations. Geometry of Motion. (Cf. E 2.)	
· · · · · · · · · · · · · · · · · · ·	

4 CONTENTS.

	G. Applied Mathematics.	AGE.
G 1.	General Mechanics	34
G 2.	Celestial Mechanics	34
G 3.	Elasticity, Hydromechanics and Sound	35
G 4.	Electricity, Light and Heat	3 5

INDEX BY AUTHORS.

	Vol.*	PAGES.
ALLEN, R. B., On hypercomplex number systems belonging to an	0 6	200 010
arbitrary domain of rationality	9, 2	203–218
ALLARDICE, R. E., On the envelope of the axes of a system of		
conics passing through three fixed points	4, 1	10 3–106
BIRKHOFF, GEORGE D., General mean value and remainder the-		
orems with applications to mechanical differentiation and		
quadrature	7, 1	107-136
On the asymptotic character of the solutions of certain dif-		
ferential equations containing a parameter	9, 2	219-231
Boundary value and expansion problems of ordinary linear	-	
differential equations	9, 3	373-395
Existence and oscillation theorems for a certain boundary	•	
value problem	10, 2	259-270
—— Singular points of ordinary linear differential equations	10, 4	136-470
BLAKE, E. M., Two plane movements generating quartic scrolls	1, 4	121-429
BLICHFELDT, H. F., Note on the functions of the form	•	
$f(x) \equiv \varphi(x) + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$, which in a given in-		
terval differ the least possible from zero	2, 3	100-102
— A new determination of the primitive continuous groups in	•	
two variables	2, 2	249-258
—— On the determination of the distance between two points in		
space of n dimensions	3, 4	167-481
— On the order of linear homogeneous groups		387–397
— On the order of linear homogeneous groups (second paper)	-	310-325
— A theorem concerning the invariants of linear homogeneous		161-466
groups, with some applications to substitution groups	6.	546
— On imprimitive linear homogeneous groups	-	230-236
— On the order of linear homogeneous groups (supplement).	•	523-529
— On modular groups isomorphic with a given linear group	8,	30- 32
BLISS, GILBERT AMES, The second variation of a definite integral	~ ₁	
when one end-point is variable	3, 1	32–141
— An existence theorem for a differential equation of the sec-	0, 1	. UM III
ond order, with an application to the calculus of variations	5, 1	113–125
one order, with an approximation to the calculus of variations	02	140

^{*}The numbers in this column indicate for every paper the volume and part of volume of publication, and thus the date of publication, e. g., the first paper in the list was published in April, 1908, and the second in January, 1903.

In this column references are made also to the *Notes and errata* published in the concluding numbers of various volumes, e. g., a note to the thirteenth paper appears in the *Notes and errata* of volume 6.

- Sufficient condition for a minimum with respect to one-		
sided variations	5,	477-492
A generalization of the notion of angle	7.	184-196
— (and M. Mason), A problem in the calculus of variations	2	
in which the integrand is discontinuous	7.	325-336
— A new form of the simplest problem of the calculus of vari-	-	405-414
ations	$\begin{cases} 8_{4} \end{cases}$	536
(and M. Mason), The properties of curves in space which	\ O ₄	
minimize a definite integral	9_{4}	440-466
BÔCHER, MAXIME, On regular singular points of linear differen-	04	110 100
tial equations of the second order whose coefficients are not	(1	40- 52
	$\begin{cases} \frac{1}{1} \\ 1 \end{cases}$	507
-— Application of a method of D'Alembert to the proof of	(14	001
Sturm's theorems of comparison	1,	414-420
Certain cases in which the vanishing of the Wronskian is a	14	111 120
sufficient condition for linear dependence	2,	139–149
—— An elementary proof of a theorem of Sturm	$\frac{2}{2}$	150–151
• •	$\boldsymbol{\mathcal{L}_2}$	100-101
—— On certain pairs of transcendental functions whose roots	0	100 100
separate each other	$2_{_4}$	428–436
On the real solutions of systems of two homogeneous linear	9	100 015
differential equations of the first order	3_2	196–215
On the regions of convergence of power-series which repre-	10	071 070
sent two-dimensional harmonic functions	-	271–278
Bolza, Oskar, The elliptic σ -functions considered as a special	-	53- 65
case of the hyperelliptic σ -functions	(2,	484
—— New proof of a theorem of Osgood's in the calculus of vari-		
ations	$2_{{\scriptscriptstyle ullet}}$	422 - 427
ations Proof of the sufficiency of Jacobi's condition for a perma-	$2_{{}_{\scriptscriptstyle{f 4}}}$	422–427
ations —— Proof of the sufficiency of Jacobi's condition for a permanent sign of the second variation in the so-called isoperi-	•	
ations —— Proof of the sufficiency of Jacobi's condition for a permanent sign of the second variation in the so-called isoperimetric problems.	2 ₄ 3 ₃	422–427 305–311
ations —— Proof of the sufficiency of Jacobi's condition for a permanent sign of the second variation in the so-called isoperi-	•	
ations —— Proof of the sufficiency of Jacobi's condition for a permanent sign of the second variation in the so-called isoperimetric problems.	•	
ations — Proof of the sufficiency of Jacobi's condition for a permanent sign of the second variation in the so-called isoperimetric problems. — A fifth necessary condition for a strong extremum of the integral $\int_{x_1}^{x_0} F(x, y, y') dx$	33	305-311
ations —— Proof of the sufficiency of Jacobi's condition for a permanent sign of the second variation in the so-called isoperimetric problems. —— A fifth necessary condition for a strong extremum of the integral $\int_{x_1}^{x_0} F(x, y, y') dx$ —— Weierstrass's theorem and Kneser's theorem on trans-	33	305-311
ations	3_3 7_2	305–311 314–324
ations	33	305–311 314–324
 ations Proof of the sufficiency of Jacobi's condition for a permanent sign of the second variation in the so-called isoperimetric problems A fifth necessary condition for a strong extremum of the integral \$\int_{x_1}^{x_0} F(x, y, y') dx\$. Weierstrass's theorem and Kneser's theorem on transversals for the most general case of an extremum of a simple definite integral. Existence proof for a field of extremals tangent to a given 	3 ₃ 7 ₂	305-311 314-324 459-488
 ations Proof of the sufficiency of Jacobi's condition for a permanent sign of the second variation in the so-called isoperimetric problems. A fifth necessary condition for a strong extremum of the integral \$\int_{x_1}^{x_0} F(x, y, y') dx\$. Weierstrass's theorem and Kneser's theorem on transversals for the most general case of an extremum of a simple definite integral. Existence proof for a field of extremals tangent to a given curve. 	3 ₃ 7 ₂ 7 ₄ 8 ₃	305-311 314-324 459-488 399-404
 ations	3 ₃ 7 ₂ 7 ₄ 8 ₃ 4 ₄	305-311 314-324 459-488 399-404 489-492
 ations	3 ₃ 7 ₂ 7 ₄ 8 ₃	305-311 314-324 459-488 399-404
 ations	3 ₃ 7 ₂ 7 ₄ 8 ₃ 4 ₄ 6 ₃	305-311 314-324 459-488 399-404 489-492 275-285
ations	3 ₃ 7 ₂ 7 ₄ 8 ₃ 4 ₄	305-311 314-324 459-488 399-404 489-492
 ations	3 ₃ 7 ₂ 7 ₄ 8 ₃ 4 ₄ 6 ₃	305-311 314-324 459-488 399-404 489-492 275-285

— On the variation of the arbitrary and given constants in	
dynamical equations 4 _s	333-350
On the smaller perturbations of the lunar arguments $\left\{ \begin{array}{l} 5_3 \\ 5_4 \end{array} \right.$	279 - 287
	551
—— On a general method for treating transmitted motions and	
its application to indirect perturbations 6_s	332-343
Bussey, W. H. (and O. Veblen), Finite projective geometries 72	241-259
CAJORI, FLORIAN, Divergent and conditionally convergent series	
whose product is absolutely convergent 2_1	25-36
CAMPBELL, J. E., On the types of linear partial differential	
equations of the second order in three independent variables	
which are unaltered by the transformations of a continu- $\int 1_2$	243 - 258
ous group	509
Carver, W. B., On the Cayley-Veronese class of configurations 6,	534 - 545
Chessin, Alexander S., On relative motion	116-169
Coble, A. B., The quartic curve as related to conics 4_1	65- 85
— On the relation between the three-parameter groups of a	
cubic space curve and a quadric surface 7,	1- 20
—— An application of the form-problems associated with certain	
Cremona groups to the solution of equations of higher degree 9,	396-424
Cole, F. N., The groups of order p^3q^8	214-219
Coolidge, Julian Lowell, A purely geometric representation	
of all points in the projective plane	182 – 192
—— Quadric surfaces in hyperbolic space 4 ₂	161-170
—— The equilong transformations of space 9 ₂	178–182
Curtiss, D. R., Theorems converse to Riemann's on linear dif-	
ferential equations	99–106
DARWIN, G. H., The approximate determination of the form of	
Maclaurin's spheroid4	113-133
— Further note on Maclaurin's spheroid 9 ₁	34- 38
DENTON, WILLIAM WELLS, On the osculating quartic of a plane	00= 000
curve	297–308
Dickson, Leonard Eugene, Definition of the abelian, the two	
hypoabelian, and related linear groups, as quotient groups	00 00
of the groups of isomorphisms of certain elementary groups 1,	30- 38
A new definition of the general abelian linear group 1	91- 96
— Determination of an abstract simple group of order 27 · 36 ·	250 070
5 7 holoedrically isomorphic with a certain orthogonal group $\{1_3\}$	
and with a certain hyperabelian group	509
— Canonical forms of quaternary abelian substitutions in an $\{2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$	103-138
arbitrary Galois field	499
— Theory of linear groups in an arbitrary field $\begin{cases} 2 \\ 3 \end{cases}$	363-394
1.1	500 38- 48
— The groups of Steiner in problems of contact	50- 40

—— On the group defined for any given field by the multiplica-	
tion table of any given finite group	285-301
— The groups of Steiner in problems of contact (second paper). 3 ₃	377-382
	13- 20
— Definitions of a field by independent postulates $\begin{cases} 4_1 \\ 5_4 \end{cases}$	549-550
— Definitions of a linear associative algebra by independent	
postulates 4,	21 26
— On the subgroups of order a power of p in the quater-(4,	371-386
nary abelian group in the Galois field of order p^n	550-551
— On the reducibility of linear groups 4	434-436
— The subgroups of order a power of 2 of the simple quinary (5,	1- 38
orthogonal group in the Galois field of order $p^n = 8l \pm 3$ (5)	551
— Determination of all the subgroups of the known simple (5,	126-166
group of order 25920	551
— The minimum degree τ of resolvents for the p-section of	
the periods of hyperelliptic functions of four periods 6,	48- 57
Definitions of a mann and a field by independent of 1.	198-204
— Definitions of a group and a field by independent postulates $\begin{cases} 6_2 \\ 6_4 \end{cases}$	547
— On semi-groups and the general isomorphism between finite	
groups 6 ₂	205 - 208
— On hypercomplex number systems 63	344-348
— On quadratic, hermitian and bilinear forms	275 - 292
— Linear algebras in which division is always uniquely	
possible	370-390
—— On commutative linear algebras in which division is always	
uniquely possible	514 - 522
Invariants of binary forms under modular transformations $\begin{cases} 8_2 \\ 8_4 \end{cases}$	205 - 232
1 The range of binary forms under modular transformations \\ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	535
— Modular theory of group-matrices	389 - 398
— Representations of the general symmetric group as linear	
groups in finite and infinite fields 9_2	121-148
—— Definite forms in a finite field 10,	109 - 122
— General theory of modular invariants 10,	123 - 158
— Equivalence of pairs of bilinear or quadratic forms under	
rational transformations 10 ₃	347-360
Dresden, Arnold, The second derivatives of the extremal integral. 9,	467 - 486
EIESLAND, JOHN, On a certain system of conjugate lines on a	
surface connected with Euler's transformation 6_{\downarrow}	450 - 471
EISENHART, LUTHER PFAHLER, Conjugate rectilinear congruences. 3 ₃	354 - 371
— Congruences of curves 4 ₄	470-488
—— Three particular systems of lines on a surface	421 - 437
—— Surfaces of constant curvature and their transformations 6,	472 - 485
—— Applicable surfaces with asymptotic lines of one surface	
corresponding to a conjugate system of another $\begin{cases} 8_1 \\ e \end{cases}$	113–134
corresponding to a conjugate system of another $\frac{1}{8}$	535

—— Surfaces with isothermal representation of their lines of	
curvature and their transformations	149-177
EMCH, ARNOLD, Algebraic transformations of a complex variable	
realized by linkages 3,	493-498
Epsteen, Saul, On reducible groups 4 ₃	249-250
—— Semireducible hypercomplex number systems	437-444
5 ₄	551
—— On the definition of reducible hypercomplex number systems. 5 ₁ —— (and J. H. Maclagan-Wedderburn), On the structure of	105–109
hypercomplex number systems	172–178
cusps	26- 32
	49- 86
Fields, J. C., On the reduction of the general abelian integral $\left\{ egin{array}{c} 2_1 \\ 2_4 \end{array} \right.$	486
FINDLAY, WILLIAM, The Sylow subgroups of the symmetric	
group	263-278
Fite, W. B., On metabelian groups 3_3	331-353
— Groups whose orders are powers of a prime	61- 68
powers of a prime 8,	107-112
Irreducible homogeneous linear groups in an arbitrary	
domain 10,	315-318
FORD, W. B., On the possibility of differentiating term by term	
the developments for an arbitrary function of one real vari-	
able in terms of Bessel functions 42	178-184
—— On the analytic extension of functions defined by double	
power series 7 ₂	260-274
— On the integration of the homogeneous linear difference	
equation of second order $\dots 10_3$	319-336
Fréchet, M., Sur les opérations linéaires	493–499
—— Sur les opérations linéaires (deuxième note) 6_2	134–140
Sur l'écart de deux courbes et sur les courbes limites 64	435–449
—— Sur les opérations linéaires (troisième note)	433–446
GALE, ARTHUR SULLIVAN, On the rank, order and class of alge-	
braic minimum curves 3,	451–466
GLENN, O. E., Determination of the abstract groups of order	
p^2qr ; p , q , r being distinct primes	137–151
GORDAN, PAUL, Formentheoretische Entwickelung der in Herrn	
White's Abhandlung über Curven dritter Ordnung enthal-	
tenen Sätze	9- 13
— Die Hessische und die Cayley'sche Curve	402–413
GOURSAT, E., Sur la définition générale des fonctions analy-	44 40
tiques, d'après Cauchy	14- 16
—— A simple proof of a theorem in the calculus of variations 5,	110-112

GREENHILL, ALFRED GEORGE, The elliptic integral in electro-	
magnetic theory 8,	447-534
GRIFFIN, FRANK LOXLEY, Certain periodic orbits of k finite	
bodies revolving about a relatively large central mass 9,	1- 33
HADAMARD, J., La théorie des plaques élastiques planes 3	401-422
HARTWELL, GEORGE WILBUR, Plane fields of force whose trajec-	
tories are invariant under a projective group 10,	220-246
HASKELL, M. W., The resolution of any collineation into per-	
spective reflections 7,	361-369
HASKINS, CHARLES NELSON, On the invariants of quadratic dif- $\int 3_1$	71- 91
ferential forms	501
On the invariants of differential forms of degree higher	
than two 4,	38- 43
— On the invariants of quadratic differential forms, II 5 ₂	167-192
— Note on the differential invariants of a surface in space 7	152-154
— On the differential invariants of a plane	588-590
HATHAWAY, A. S., Quaternion space	46- 59
HAWKES, H. E., On hypercomplex number systems	312-330
Hedrick, E. R., On derivatives over assemblages	345-353
HEFFTER, L., Ueber Curvenintegrale im m-dimensionalen Raum 4,	142-148
HILBERT, DAVID, Ueber Flächen von constanter Gauss'scher	
Krümmung 2,	87- 99
HILL, G. W., On the extension of Delaunay's method in the (1,	205-242
lunar theory to the general problem of planetary motion 1	508-509
Hun, John Gale, On certain invariants of two triangles 5,	39- 55
HUNTINGTON, EDWARD V., A complete set of postulates for the (3,	264-279
theory of absolute continuous magnitude	549
— Complete sets of postulates for the theories of positive in-	
tegral and of positive rational numbers	280-284
— Two definitions of an abelian group by sets of independent	
postulates 4,	27- 30
— Definitions of a field by sets of independent postulates 4,	31- 37
— Complete sets of postulates for the theory of real quantities 4,	358-370
Sets of independent postulates for the algebra of logic $\begin{cases} 5_3 \end{cases}$	288-309
Sets of independent postulates for the algebra of logic $\begin{cases} 5_3 \\ 5_4 \end{cases}$	552
A set of postulates for real algebra, comprising postulates	
for a one-dimensional continuum and for the theory of (6_1)	17- 41
groups	546
— Note on the definition of abstract groups by sets of inde- (6,	181–197
pendent postulates	591
— A set of postulates for ordinary complex algebra 6	209-229
HUTCHINSON, J. I., On certain relations among the theta con-	
stants	391-394
— On a class of automorphic functions	1- 11

Ueber die Reducibilität der reellen Gruppen linearer homo-		
gener Substitutionen Zur Gruppentheorie mit Anwendungen auf der Theorie der	4,	171–177
linearen homogenen Differentialgleichungen	5_1	61- 80
— Ueber die vollständig reduciblen Gruppen, die zu einer		
Gruppe linearer homogener Substitutionen gehören	6,	504-533
Longley, William Raymond, A class of periodic orbits of an		159–188
infinitesimal body subject to the attraction of n finite bodies Loud, Frank H., Sundry metric theorems concerning n lines in	(8,	535
a planeLOVETT, E. O., On a problem including that of several bodies and	1_{3}	323-338
admitting of an additional integral	6,	491-495
MACAULAY, F. S., On a method of dealing with the intersections	-	
of plane curves.	$5_{\scriptscriptstyle{4}}$	385–410
MACLAGAN-WEDDERBURN, J. H. (and S. EPSTEEN), On the struc-		
ture of hypercomplex number systems	6	172–178
— A theorem on finite algebras	6	349–352
geometries	8_{3}	379 - 388
McClintock, E., On the nature and use of the functions employed		
in the recognition of quadratric residues	3,	92 - 109
McDonald, J. H., On the system of a binary cubic and quadratic	-	
and the reduction of hyperelliptic integrals of genus two to		
elliptic integrals by a transformation of the fourth order	2_{4}	437-458
— A problem in the reduction of hyperelliptic integrals	7,	578-587
Manning, W. A., The primitive groups of class 2p which con-	- 4	0.000
tain a substitution of order p and degree $2p$	$4_{_3}$	351 - 357
—— On the primitive groups of class $3p$	6_{1}	42- 47
Groups in which a large number of operators may corre-		
spond to their inverses	7,	233 - 240
— On multiply transitive groups	7,	499-508
— On the order of primitive groups	10,	247 - 258
MASCHKE, HEINRICH, Note on the unilateral surface of Moebius.	1,	39
— A new method of determining the differential parameters	1.	197-204
and invariants of quadratic differential quantics		508
On superosculating quadric surfaces	3,	482-484
— A symbolic treatment of the theory of invariants of quad-	4	
ratic differential quantics of n variables	4,	445-469
Differential negations of the first order	7,	69- 80
—— Differential parameters of the first order	$\begin{bmatrix} 7_1 \\ 7_4 \end{bmatrix}$	591
—— The Kronecker-Gaussian curvature of hyperspace	7	81- 93
Mason, Max, Green's theorem and Green's functions for certain		
systems of differential equations	5_2	220-225
— The doubly periodic solutions of Poisson's equation in two	4	
independent variables	6_2	159-164

—— (and G. A. Bliss), A problem in the calculus of variations	
in which the integrand is discontinuous	325-336
On the boundary value problems of linear ordinary differ-	
ential equations of second order	337-360
—— The expansion of a function in terms of normal functions 8,	427 - 432
— (and G. A. Bliss), The properties of curves in space	
which minimize a definite integral 9_4	440-466
Merrill, Helen A., On solutions of differential equations which $\int 4_4$	423-433
possess an oscillation theorem	551
Mertens, F., Zur linearen Transformation der θ -Reihen 2_s	331 - 342
Metzler, W. H., On certain aggregates of determinant minors 2,	395–403
MILLER, G. A., On the groups which are the direct products of	
two subgroups 1_1	66- 71
— On the groups which have the same group of isomorphisms 1,	395–401
—— Determination of all the groups of order p^m which contain $\{2, 2\}$	259-272
the abelian group of type $(m-2, 1)$, p being any prime $\{3, 4\}$	499–500
— On the groups of order p^m which contain operators of order	
p^{m-2} 3	383–387
— On the holomorph of a cyclic group	153–160
——(and H. C. Moreno), Non-abelian groups in which every	900 404
sub-group is abelian	398–404
—— Determination of all the groups of order 2 ^m which contain	E0 00
an odd number of cyclic subgroups of composite order 6 ₁	58- 62
On the invariant subgroups of prime index	326–331
Groups containing only three operators which are squares. 7 ₁	94- 98
— The groups of order p^m which contain exactly p cyclic subgroups of order p^a	228-232
	1- 13
—— Generalization of the groups of genus zero $\begin{Bmatrix} 8_1 \\ 10_i \end{Bmatrix}$	510
— The groups in which every subgroup is either abelian or	010
hamiltonian	25- 29
— Groups defined by the orders of two generators and the	
order of their commutator	67- 78
— On the holomorph of the cyclic group of order p^m 9_2	232-236
— The central of a group 10,	50- 60
— Automorphisms of order two	471-478
Moore, Charles N., On the introduction of convergence factors (8,	299-330
into summable series and summable integrals	535
— The summability of the developments in Bessel functions,	
with applications 10,	391-435
Moore, Eliakim Hastings, On certain crinkly curves $\begin{cases} 1_1 \\ 1 \end{cases}$	72- 90
1	507
A simple proof of the fundamental Cauchy-Goursat theorem. $\begin{cases} 1_4 \\ 2_1 \end{cases}$	499–506
2	486

	004 000
—— Concerning Harnack's theory of improper definite integrals $\left\{ egin{array}{l} 2_{\mathtt{s}} \\ 2_{\mathtt{s}} \end{array} \right.$	296–330 487
— On the theory of improper definite integrals 2,	459-475
-	142-158
— On the projective axioms of geometry $\begin{cases} 3_1 \\ 3_4 \end{cases}$	501
A definition of abstract groups $\left\{\begin{array}{l} 3_4 \\ 5_4 \end{array}\right.$	485-492
7	549
— On a definition of abstract groups	179–180
MOORE, ROBERT L., Geometry in which the sum of the angles of	000 000
every triangle is two right angles	369–378
Sets of metrical hypotheses for geometry 9,	487–512
Moreno, H. C. (and G. A. MILLER), Non-abelian groups in which	000 101
every sub-group is abelian	398–404
MORLEY, FRANK, On the metric geometry of the plane n-line 1,	97–115
— Orthocentric properties of the plane <i>n</i> -line	1- 12
Projective coördinates	288–296
On the geometry whose element is the 3-point of a plane 5,	467-476
On reflexive geometry.	14- 24
Morris, R., On the automorphic functions of the group (0, 3;	
l_1, l_2, l_3	425-448
Moulton, Forest Ray, On a class of particular solutions of the \int_{3}^{1}	17- 29
problem of four bodies	499
	549
— A simple non-desarguesian plane geometry 3 ₂	192–195
—— A class of periodic solutions of the problem of three bodies	
with application to the lunar theory	537–577
Neikirk, L. I., Groups of order p^m , which contain cyclic sub-	
groups of order p^{m-3} 6_3	316–325
Osgood, W. F., On the existence of the Green's function for the $\{1_s$	310-314
most general simply connected plane region $(2,$	484–485
—— On the existence of a minimum of the integral	
$\int_{x_0}^{x_1} F(x, y, y') dx$	
when x_0 and x_1 are conjugated points, and the geodesics on	
an ellipsoid of revolution: a revision of a theorem of	
Kneser's	166-182
\cdot	273-295
On a fundamental property of a minimum in the calculus) 2	486
of variations and the proof of a theorem of Weierstrass's $\begin{pmatrix} 2_4 \\ 3_4 \end{pmatrix}$	500
— A Jordan curve of positive area 4,	107-112
— On Cantor's theorem concerning the coefficients of a con-	
vergent trigonometric series, with generalizations	337-346
Peirce, J. M., On certain complete systems of quaternion ex-	
pressions, and on the removal of metric limitations from the	
calculus of quaternions	411-420

1909]

15

Pierpont, J., On multiple integrals
— On improper multiple integrals
— Area of curved surfaces. 7, 489-498 Poincaré, Henri, Sur les lignes géodésiques des surfaces convexes 6 237-274 Porter, M. B., Sets of coincidence points on the non-singular cubics of a syzygetic sheaf. 2, 37-42
Poincaré, Henri, Sur les lignes géodésiques des surfaces convexes 6 237-274 Porter, M. B., Sets of coincidence points on the non-singular cubics of a syzygetic sheaf
cubics of a syzygetic sheaf
cubics of a syzygetic sheaf
Pringsheim, A., Ueber die Anwendung der Cauchy'schen Multi-
plicationsregel auf bedingt convergente oder divergente
Reihen 2, 404-412
— Ueber den Goursat'schen Beweis des Cauchy'schen Inte-
gralsatzes 2, 413–421
Pupin, M. I., Wave propagation over non-uniform electrical (1, 259-286
conductors
RANUM, ARTHUR, The groups of classes of congruent matrices,
with application to the group of isomorphisms of any
abelian group
—— Concerning linear substitutions of finite period with rational
coefficients
REED, FRANK WALKER, On singular points in the approximate
development of the perturbative function
RICHARDSON, R. G. D., Improper multiple integrals
—— The integration of a sequence of functions and its applica-
tion to iterated integrals
RIETZ, H. L., On groups in which certain commutative opera-
tions are conjugate
Roe, E. D., Jr., On the coefficients in the product of an alternant (5, 193-213
and a symmetric function
(6. 63-74
— On the coefficients in the quotient of two alternants $\begin{cases} 6_1 & \text{obs} \\ 6_4 & \text{obs} \end{cases}$
ROEVER, WILLIAM H., Brilliant points of curves and surfaces 9, 245-279
ROYCE, J., The relations of the principles of logic to the founda-
tions of geometry
Schur, I., Beiträge zur Theorie der Gruppen linearer homogener
Substitutionen
Schweitzer, Arthur Richard, Note on a system of axioms for
geometry 10 ₃ 309–314
Scott, C. A., On a recent method for dealing with the intersec-
tions of plane curves
—— On the circuits of plane curves
— Note on the real inflexions of plane curves
Sharpe, F. R., On the stability of the motion of a viscous liquid. 6, 496-503
Shaw, James Byrnie, Theory of linear associative algebra 4, 251–287
— On nilpotent algebras

-— Algebras defined by finite groups $\begin{cases} 5 \\ 5 \end{cases}$	326–342 552
SMITH, A. W., The symbolic treatment of differential geometry 7 SMITH, CLARA E., A theorem of Abel and its application to the	-
development of a function in terms of Bessel's functions 8 SMITH, PERCEY F., On surfaces enveloped by spheres belonging	92–106
to a linear spherical complex	371–390
— Geometry within a linear spherical complex 2. — On the linear transformations of a quadratic form into	234-248
itself	1- 16
nine double points in four-dimensional space 10	71- 78
STÄCKEL, P., Die kinematische Erzeugung von Minimalflächen 7,	•
STECKER, HENRY FREEMAN, On the determination of surfaces	200-010
capable of conformal representation upon the plane in	
such a manner that geodetic lines are represented by alge- \(\)2	152–165
braic curves	486
—— Concerning the existence of surfaces capable of conformal	
representation upon the plane in such a manner that geodetic	
lines are represented by a prescribed system of curves 3,	12- 22
STEPHENS, R. P., On the pentadeltoid 7,	207-227
STICKELBERGER, L., Zur Theorie der vollständig reduciblen	
Gruppen, die zu einer Gruppe linearer homogener Substitu-	
tionen gehören	509-513
Stolz, O., Zur Erklärung der Bogenlänge und des Inhaltes einer (3,	
krummen Fläche	
Nachtrag zum Artikel: "Zur Erklärung der Bogenlänge,	
u.s.w." (dieses Bandes, S. 23 f.)	302-304
STORY, WILLIAM EDWARD, Denumerants of double differentiants 8,	
STRINGHAM, IRVING, On the geometry of planes in a parabolic	
space of four dimensions 2,	183-214
STROMQUIST, C. E., On geometries in which circles are the short-	100 111
est lines	175–183
STRONG, WENDELL M., Note on non-quaternion number systems. 2,	
STUDY, EDUARD, Zur Differential-geometrie der analytischen	10 10
Curven	1- 49
TABER, H., On hypercomplex number systems (first paper) 5,	509 - 548
UNDERHILL, ANTHONY LISPENARD, Invariants of the function	
F(x, y, x', y') in the calculus of variations	316-338
VAN VLECK, EDWARD B., On linear criteria for the determina- 13	293-309
tion of the radius of convergence of a power series	509
— On the convergence of continued fractions with complex $\{2_{s}\}$	215-233
elements	
On the convergence and character of the continued fraction	

a_1z a_2z a_3z	476 400
$\frac{a_1^z}{1} + \frac{a_2^z}{1} + \frac{a_3^z}{1} + \dots \qquad 2$	476–483
— A determination of the number of real and imaginary roots (3,	110-131
of the hypergeometric series	
— On an extension of the 1894 memoir of Stieltjes	
— On the convergence of algebraic continued fractions whose	
coefficients have limiting values	253-262
— A proof of some theorems on pointwise discontinuous	
functions 8 ₂	189-204
— On non-measurable sets of points, with an example 92	
VEBLEN, OSWALD, A system of axioms for geometry 5 ₃	
— Theory of plane curves in non-metrical analysis situs 6,	
— Definition in terms of order alone in the linear continuum	
and in well-ordered sets	165-171
— the square root and relations of order 7_2	
— (and W. H. Bussey), Finite projective geometries 7,	
— Collineations in a finite projective geometry	
— (and J. H. Maclagan-Wedderburn), Non-desarguesian	
and non-pascalian geometries8	379-388
Continuous increasing functions of finite and transfinite	
ordinals9 ₃	280-292
Westlund J., On the class number of the cyclotomic number	
$k = k \left(e^{2\pi i/p^n}\right) \ldots 4_2$	201-212
WHITE, HENRY S., Conics and cubics connected with a plane	
cubic by certain covariant relations 1,	1- 8
(1	
—— Plane cubics and irrational covariant cubics	
— On twisted cubic curves that have a directrix	
Wilczynski, E. J., An application of group theory to hydro- (13	339-352
dynamics	509
•	1- 24
— Invariants of systems of linear differential equations $\begin{cases} 2_1 \\ 2_4 \end{cases}$	486
— Geometry of a simultaneous system of two linear homo- (24	
geneous differential equations of the second order	500
—— Reciprocal systems of linear differential equations 3,	60- 70
— Covariants of systems of linear differential equations and	00 10
applications to the theory of ruled surfaces	423-450
— On a certain congruence associated with a given ruled sur- (4,	185-200
face	550
—— Studies in the general theory of ruled surfaces 5,	226-252
— On ruled surfaces whose flecnode curve intersects every	
generator in two coincident points	438-446
— General theory of curves on ruled surfaces	75- 82
— General projective theory of space curves	99–133

INDEX BY AUTHORS.

—— Projective differential geometry of curved surfaces (first		
memoir)	8,	233-260
(second memoir)	9_1	79-120
(third memoir)	9,	293-315
	10,	176-200
4.0.4.7	10.	279-296
WILSON, EDWIN B., The decomposition of the general collinea-	•	
tion of space into three skew reflections	1,	193-196
Oblique reflections and unimodular strains		
— On the differential equations of the equilibrium of an inex-	-	
tensible string	9,	425-439
Wright, J. E., On differential invariants	6	286-315
—— Correspondences and the theory of groups	7,	391-400
Young, Archer Everett, On certain isothermic surfaces	8,	415-426
— On a certain class of isothermic surfaces	10,	79- 94
Young, John Wesley, On the holomorphisms of a group	3,	186-191
— On the group of sign $(0, 3; 2, 4, \infty)$ and the functions	-	
belonging to it	5,	81-104
—— General theory of approximation by functions involving a	•	
given number of arbitrary parameters	8,	331-344

INDEX BY SUBJECT MATTER.

A. LOGICAL ANALYSIS OF MATHEMATICAL DISCIPLINES.

Vo	DL. PA	GES.
BLICHFELDT, H. F., On the determination of the distance be-		
tween two points in space of n dimensions	3 467	-481
DICKSON, LEONARD EUGENE, Definitions of a field by independent (4	1 13	- 20
postulates		-550
—— Definitions of a linear associative algebra by independent		
postulates 4		- 26
Definitions of a group and a field by independent postu- {		3–204
lates	_	547
HUNTINGTON, EDWARD V., A complete set of postulates for the f ?	3 264	-279
theory of absolute continuous magnitude	5	549
Complete sets of postulates for the theories of positive inte-		
gral and of positive rational numbers 3	3 280	-284
—— Two definitions of an abelian group by sets of independent		
postulates4	1 27	- 30
Definitions of a field by sets of independent postulates	4 31	- 37
Complete sets of postulates for the theory of real quantities.	4 358	3-370
	5 288	3–309
—— Sets of independent postulates for the algebra of logic $\begin{cases} c \\ b \end{cases}$	5	552
A set of postulates for real algebra, comprising postulates (0 15	'- 41
for a one-dimensional continuum and for the theory of		
groups	3	546
— Note on the definitions of abstract groups and fields by sets (6	3 181	-197
of independent postulates	7 591	_
		-229
	6 486	-4 90
MACLAGAN-WEDDERBURN, J. H. (and O. VEBLEN), Non-desar-		
guesian and non-pascalian geometries	3 379	-388
Moore, Eliakim Hastings, On the projective axioms of geom- (&		-158
etry		501
		6-492
A definition of abstract groups $\left\{ egin{array}{l} \xi \end{array} \right\}$	5	549
— On a definition of abstract groups	-	-180
Moore, R. L., Geometry in which the sum of the angles of every		
	369	-378
—— Sets of metrical hypotheses for geometry		-512

Moulton, Forest Ray, A simple non-desarguesian plane geom-	
etry 3	192-195
ROYCE, JOSIAH, The relation of the principles of logic to the	
foundations of geometry 6	353 - 415
Schweitzer, A. R., Note on a system of axioms for geometry 10	309 - 314
VEBLEN, OSWALD, A system of axioms for geometry 5	343 - 384
—— The square root and the relations of order	197 - 199
VEBLEN, O. (and J. H. MACLAGAN-WEDDERBURN). Non-desar-	
guesian and non-pascalian geometries 8	379–388
B. Algebra.	
B 1. Rational functions. Theory of Equations. Determinants. Symmetric	Functions.
Coble, A. B., An application of the form-problems associated	
with certain Cremona groups to the solution of equations of	
higher degree	396–424
METZLER, W. H., On certain aggregates of determinant minors 2	395–403
ROE, Jr., E. D., On the coefficients in the product of an alter- 5	193–213
nant and a symmetric function	546-547
— On the coefficients in the quotient of two alternants $\begin{cases} 6 \\ 6 \end{cases}$	63- 74
	546
B 2. Algebraic Forms.	
(Cf. F 2.)	
Dickson, L. E., On quadratic, hermitian, and bilinear forms 7	275 - 292
—— Invariants of binary forms under modular transformations $\begin{cases} 8 \\ 8 \end{cases}$	205 - 232
. •	535
— Definite forms in a finite field	109-122
— General theory of modular invariants	123–158
— Equivalence of pairs of bilinear or quadratic forms under rational transformations	347-360
GORDAN, PAUL, Formentheoretische Entwickelung der in Herrn	347-300
White's Abhandlung über Curven dritter Ordnung enthalt-	
enen Sätze	9- 13
— Die Hessische und die Cayley'sche Curve 1	402-413
KASNER, EDWARD, The invariant theory of the inversion group; (1	430-498
geometry upon a quadric surface	485
—— The cogredient and disgredient theories of multiple binary	
forms 4	86–102
LANDRY, A. E., A geometrical application of binary syzygies 10	95–108
Leib, David D., On a complete system of invariants of two	001 000
triangles	361 – 390
McDonald, J. H., On the system of a binary cubic and quadratic	
and the reduction of hyperallistic integrals of gangs two to	
and the reduction of hyperelliptic integrals of genus two to elliptic integrals by a transformation of the fourth order 2	437–458

SMITH, PERCEY F., On the linear transformations of a quadratic	
	6 1- 16
	8 33- 70
B3. Linear Associative Algebra. Hypercomplex Number Syst Fields. (Cf. F1.)	ems.
ALLEN, R. B., On hypercomplex number systems belonging to	
an arbitrary domain of rationality	9 203-218
DICKSON, LEONARD EUGENE, Definition of a field by independent (4 13- 20
postulates	5 549-550
— Definitions of a linear associative algebra by independent	
	4 21- 26
— On hypercomplex number systems	6 344-348
— Linear algebras in which division is always uniquely pos-	
	7 370-390
— On commutative linear algebras in which division is always	
	7 514-522
T () () ()	4 437-444
Epsteen, Saul, Semireducible hypercomplex number systems {	5 551
—— On the definition of reducible hypercomplex number systems	5 105-109
— (and J. H. MACLAGAN-WEDDERDURN), On the structure of	
	6 172–178
· · · · · · · · · · · · · · · · · · ·	3 312-330
HUNTINGTON, EDWARD V., Definitions of a field by sets of inde-	
	4 31- 37
MACLAGAN-WEDDERBURN, J. H. (and S. EPSTEEN), On the	
	6 172–178
· · · · · · · · · · · · · · · · · · ·	6 349-352
Peirce, J. M., On certain complete systems of quaternion ex-	
pressions, and on the removal of metric limitations from the	
	5 411-420
	4 251-287
	4 405-422
•	
Algebras defined by finite groups	5 552
STRONG, WENDELL M., Note on non-quaternion number systems	2 43-48
	5 509-548
${ m B4.}$ Algebra of Logic.	
Huntington, Edward V., Sets of independent postulates for the §	5 288-309
algebra of logic	5 552
C. THEORY OF NUMBERS.	
(Cf. E1, E2.)	
• • • • • • • • • • • • • • • • • • • •	
HUNTINGTON, EDWARD V., Complete sets of postulates for the	9 990 994
EDENCES OF DOSLEVA THEORY AND OF MOSILIVA PALIONAL DIIMDAPS	

McClintock, E., On the nature and use of the functions employed in the recognition of quadratic residues	3	92–109
	4	201–212
D. Analysis.		
D 1. Functions of Real Variables. Point Sets.		
BIRKHOFF, G. D., General mean value and remainder theorems with applications to mechanical differentiation and quad-	7	107–136
$f(x) \equiv \varphi(x) + a_1 x^{n-1} + a_2 x^{n-2} + \cdots + a_n,$		
which in a given interval differ the least possible from zero. Bôcher, Maxime, Certain cases in which the vanishing of the	2	100–102
	2	139–149
	.0	271–278
whose product is absolutely convergent	2	25- 36
Fréchet, Maurice, Sur les opérations linéaires	5	493-499
—— Sur les opérations linéaires (deuxième note)	6	134-140
—— Sur l'écart de deux courbes et sur les courbes limites	6	435-449
—— Sur les opérations linéaires (troisième note)	8	433-446
Hedrick, E. R., On derivatives over assemblages	8	345-353
HEFFTER, L., Ueber Curvenintegrale in m-dimensionalen Raum.	4	142-148
HUNTINGTON, EDWARD V., A complete set of postulates for the (3	264 - 279
theory of absolute continuous magnitude		349
Complete sets of postulates for the theory of real quantities.	4	358-370
	1	72- 90
Moore, Eliakim Hastings, On certain crinkly curves	1	507
Concerning Harnack's theory of improper definite inte-	2	296-330
grals		487
——On the theory of improper definite integrals	2	459-475
Osgood, W. F. A., A Jordan curve of positive area	4	107-112
— On Cantor's theorem concerning the coefficients of a con-		
vergent trigonometric series, with generalizations	10	337-346
PIERPONT, JAMES, On multiple integrals	6	416-434
— On improper multiple integrals	7	155-174
Area of curved surfaces	7	489-498
Pringsheim, A., Ueber die Anwendung der Cauchy'schen Multi- plicationsregel auf bedingt convergente oder divergente		
Reihen	2	404-412
RICHARDSON, R. G. D., Improper multiple integrals	7	449-458

—— The integration of a sequence of functions and its applica-	
tion to iterated integrals	339–372
SMITH, CLARA E., A theorem of Abel and its application to the	00 100
development of a function in terms of Bessel's functions 8	92-106
Stolz, O., Zur Erklärung der Bogenlänge und des Inhaltes einer 3	23- 37
krummen Fläche	500
Nachtrag zum Artikel: "Zur Erklärung der Bogenlänge,	000 004
u. s. w." (dieses Bandes, S. 23 f.)	302–304
VAN VLECK, E. B., A proof of some theorems on pointwise dis-	100 004
continuous functions	189-204
On non-measurable sets of points, with an example 9	237–244
VEBLEN, OSWALD, Definition in terms of order alone in the	405 454
linear continuum and in well-ordered sets	165–171
Continuous increasing functions of finite and transfinite	
ordinals9	280-292
Young, J. W., General theory of approximation by functions	
involving a given number of arbitrary parameters 8	331–344
D 2. Functions of Complex Variables.	
· -	
EMCH, ARNOLD, Algebraic transformations of a complex variable	
realized by linkages	493–498
Ford, W. B., On the analytic extension of functions defined by	
double power series	260-274
Goursat, E., Sur la définition générale des fonctions analytiques,	
d'après Cauchy 1	14- 16
Moore, Charles N., On the introduction of convergence factors § 8	299–330
into summable series and summable integrals	535
Moore, Eliakim Hastings, A simple proof of the fundamental (1	499–506
Cauchy-Goursat theorem	486
Osgood, W. F., On the existence of the Green's function for the (1	310-314
most general simply connected plane region	484–485
Pringsheim, A., Ueber den Goursat'schen Beweis des Cauchy'	
schen Integralsatzes	413-421
VAN VLECK, EDWARD B., On linear criteria for the determina- 1	293-309
tion of the radius of convergence of a power series	509
— On the convergence of continued fractions with complex (2)	215 - 233
elements	486
—— On the convergence and character of the continued fraction	
$\frac{a_1z}{1}$, $\frac{a_2z}{1}$, $\frac{a_3z}{1}$,	476-483
1 + 1 + 1 +	110 100
— On an extension of the 1894 memoir of Stieltjes 4	297–332
— On the convergence of algebraic continued fractions whose	
coefficients have limiting values 5	253-262

D 3. Particular Functions.

Do. Tartocatar Tartocate.		
Bolza, Oskar, The elliptic σ -functions considered as a special case of the hyperelliptic σ -functions	~	53- 65 484
Dickson, L. E., The minimum degree τ of resolvents for the p-sec-	`-	101
tion of the periods of hyperelliptic functions of two periods.	6	48- 57
		49- 86
FIELDS, J. C., On the reduction of the general abelian integral	$\begin{cases} 2 \\ 2 \end{cases}$	486
Ford, W. B., On the possibility of differentiating term by term		
the developments for an arbitrary function of one real vari-		
able in terms of Bessel functions	4	178–184
GREENHILL, ALFRED GEORGE, The elliptic integral in electromagnetic theory	8	447-534
Hutchinson, J. I., On certain relations among the theta con-	Ü	
stants	1	391-394
— On a class of automorphic functions	3	1- 11
— On the automorphic functions of the group $(0, 3; 2, 6, 6)$	5	447-460
— On certain hyperabeliar functions which are expressible by	•	
theta series	7	21-25
— The hypergeometric functions of <i>n</i> variables	10	61- 70
KRAUSE, MARTIN, Ueber Systeme von Differentialgleichungen		
denen vierfach periodische Functionen Genüge leisten	1	287 - 292
McDonald, J. H., On the system of a binary cubic and quad-		
ratic and the reduction of hyperelliptic integrals of genus		
two to elliptic integrals by a transformation of the fourth		
order	2	437 - 458
— A problem in the reduction of hyperelliptic integrals	7	578 - 587
Mason, Max, the expansion of a function in terms of normal		
functions	8	427 - 432
Mertens, F., Zur linearen Transformation der θ-Reihen	2	331 - 342
Moore, Charles N., The summability of the developments in		
Bessel functions, with applications	10	391–435
Morris, Richard, On the automorphic functions of the group		
$(0,3; l_1, l_2, l_3)$	7	425–448
VAN VLECK, EDWARD B., A determination of the number of	(110–131
real and imaginary roots of the hypergeometric series	(3	501
Young, John Wesley, On the group of sign $(0, 3; 2, 4, \infty)$	_	
and the functions belonging to it	5	81–104
D 4. Ordinary Differential Equations.		
(Cf. D 3, F 4.)		
BIRKHOFF, GEORGE D., On the asymptotic character of the solu-		
tions of certain differential equations containing a parameter.	9	219-231
— Boundary values and expansion problems of ordinary linear	-	
differential equations	9	373-395
-		

— Existence and oscillation theorem for a certain boundary	
value problem	259-270
—— Singular points of ordinary linear differential equations 10	436-470
BLISS, GILBERT AMES, An existence theorem for a differential	100 1.0
equation of the second order, with an application to the cal-	
culus of variations	113-125
BÔCHER, MAXIME, On regular singular points of linear differen-	
tial equations of the second order whose coefficients are not (1	40- 52
necessarily analytic	507
— Application of a method of D'Alembert to the proof of	
Sturm's theorems of comparison	414-420
— An elementary proof of a theorem of Sturm 2	150-151
— On certain pairs of transcendental functions whose roots	
separate each other	428-436
— On the real solutions of systems of two homogeneous linear	
differential equations of the first order	196-215
Curtiss, D. R., Theorems converse to Riemann's on linear dif-	
ferential equations	99-106
LOEWY, ALFRED, Zur Gruppentheorie mit Anwendungen auf die	
Theorie der linearen homogenen Differentialgleichungen 5	61- 80
Mason, Max, On the boundary value problems of linear ordinary	
differential equations of second order	337-360
MERRILL, HELEN A, On solutions of differential equations which (4	423-433
possess an oscillation theorem	551
Wilczynski, E. J., Invariants of systems of linear differential (2)	1- 24
equations	486
—— Covariants of systems of linear differential equations and	
applications to the theory of ruled surfaces	423-450
•	
D 5. Partial Differential Equations.	
CAMPBELL, J. E., On the types of linear partial differential equa-	
tions of the second order in three independent variables	0.40 0.50
which are unaltered by the transformations of a continuous \ \(\frac{1}{2} \)	243–258
group	509
Kellogg, O. D., Potential functions on the boundary of their	
regions of definition	39- 50
— Double distribution and the Dirichlet problem 9	51- 66
Mason, Max, Green's theorem and Green's functions for certain	040 30
systems of differential equations	220–225
— The doubly periodic solutions of Poisson's equation in two	1 FO 10:
independent variables	159–164
D 6. Differential Forms.	
HASKINS, CHARLES; NELSON, On the invariants of quadratic dif- (3	71- 91
ferential forms	501

—— On the invariants of differential forms of degree higher than	
two 4	38- 43
On the invariants of quadratic differential forms, II 5	6 167–192
— Note on the differential invariants of a surface and of space 7	152–154
—— On the differential invariants of a plane	588–590
MASCHKE, HEINRICH, A new method of determining the differ-	
ential parameters and invariants of quadratic differential f 1	
quantics	508
A symbolic treatment of the theory of invariants of quad-	
ratic differential quantics of n variables	
—— Differential parameters of the first order $\left\{ \begin{array}{l} 7 \\ 7 \end{array} \right\}$	7 69- 80
\	001
SMITH, A. W., The symbolic treatment of differential geometry	
Wright, J. E., On differential invariants	S 286–315
D 7. Calculus of Variations.	
BLISS, GILBERT AMES, The second variation of a definite integral	
	3 132–141
—— An existence theorem for a differential equation of the sec-	
	5 113–125
—— Sufficient condition for a minimum with respect to one-	
sided variations	5 477-492
— A generalization of the notion of angle	7 184–196
- (and Max Mason), A problem of the calculus of varia-	
	7 325–336
— A new form of the simplest problem of the calculus of \ 8	8 405–414
variations	536
(and Max Mason), The properties of curves in space which	
minimize a definite integral	9 440–466
Bolza, O., New proof of a theorem of Osgood's in the calculus	
	2 422–427
—— Proof of the sufficiency of Jacobi's condition for a perma-	
nent sign of the second variation in the so-called isoperi-	
F	305–311
— A fifth necessary condition for a strong extremum of the	
integral $\int_{x_0}^{x_1} F(x, y, y') dx$	7 314–324
Weierstrass's theorem and Kneser's theorem on transversals	
for the most general case of an extremum of a simple definite	
	459–488
Existence proof for a field of extremals tangent to a given	
• • • • • • • • • • • • • • • • • •	8 399–404
Dresden, Arnold, The second derivatives of the extremal-	
integral	9 467-486

Goursat, E., A simple proof of a theorem in the calculus of	
variations	110–112
Mason, Max (and G. A. Bliss), The properties of curves in	110 166
space which minimize a definite integral	440–466
$\int_{x_0}^x F(x, y, y') dx$	
when x_0 and x_1 are conjugate points, and the geodesics on an	
ellipsoid of revolution: a revision of theorem of Kneser's 2	166-182
— On a fundamental property of a minimum in the calculus $\begin{cases} 2 \\ 2 \end{cases}$	273 – 295
of variations and the proof of a theorem of Weierstrass's $\binom{2}{3}$	486
	500
STROMQUIST, C. E., On geometries in which circles are the short-	185 100
est lines	175–183
Underhill, A. L., Invariants of the function $F(x,y,x',y')$ in the calculus of variations	316-338
Calculus of Variations	010-000
${ m D~8.} Difference~~Equations.$	
FORD, W. B., On the integration of the homogeneous linear dif-	
ference equation of second order 10	319-336
E. GROUPS.	
2. 0.0016.	
E 1. Discrete Groups in General.	
E 1. Discrete Groups in General. (Cf. E 2.)	
E 1. Discrete Groups in General. (Cf. E 2.) Coble, A. B., An application of the form-problems associated	
E1. Discrete Groups in General. (Cf. E2.) Coble, A. B., An application of the form-problems associated with certain Cremona groups to the solution of equations of	396_494
E 1. Discrete Groups in General. (Cf. E 2.) Coble, A. B., An application of the form-problems associated with certain Cremona groups to the solution of equations of higher degree	396- 4 24 214-219
E1. Discrete Groups in General. (Cf. E2.) COBLE, A. B., An application of the form-problems associated with certain Cremona groups to the solution of equations of higher degree	214-219
E1. Discrete Groups in General. (Cf. E2.) COBLE, A. B., An application of the form-problems associated with certain Cremona groups to the solution of equations of higher degree	
E1. Discrete Groups in General. (Cf. E2.) COBLE, A. B., An application of the form-problems associated with certain Cremona groups to the solution of equations of higher degree	214–219 126–166
E1. Discrete Groups in General. (Cf. E2.) Coble, A. B., An application of the form-problems associated with certain Cremona groups to the solution of equations of higher degree	214–219 126–166
E1. Discrete Groups in General. (Cf. E2.) Coble, A. B., An application of the form-problems associated with certain Cremona groups to the solution of equations of higher degree	214–219 126–166 551
E 1. Discrete Groups in General. (Cf. E 2.) Coble, A. B., An application of the form-problems associated with certain Cremona groups to the solution of equations of higher degree	214-219 126-166 551 48- 57 205-208
E 1. Discrete Groups in General. (Cf. E 2.) Coble, A. B., An application of the form-problems associated with certain Cremona groups to the solution of equations of higher degree	214–219 126–166 551 48– 57
E 1. Discrete Groups in General. (Cf. E 2.) Coble, A. B., An application of the form-problems associated with certain Cremona groups to the solution of equations of higher degree	214–219 126–166 551 48– 57 205–208 389–398
E 1. Discrete Groups in General. (Cf. E 2.) Coble, A. B., An application of the form-problems associated with certain Cremona groups to the solution of equations of higher degree	214-219 126-166 551 48- 57 205-208 389-398 263-278
E 1. Discrete Groups in General. (Cf. E 2.) Coble, A. B., An application of the form-problems associated with certain Cremona groups to the solution of equations of higher degree	214-219 126-166 551 48- 57 205-208 389-398 263-278 331-353
E 1. Discrete Groups in General. (Cf. E 2.) Coble, A. B., An application of the form-problems associated with certain Cremona groups to the solution of equations of higher degree	214-219 126-166 551 48- 57 205-208 389-398 263-278
E 1. Discrete Groups in General. (Cf. E 2.) Coble, A. B., An application of the form-problems associated with certain Cremona groups to the solution of equations of higher degree	214-219 126-166 551 48- 57 205-208 389-398 263-278 331-353 61- 68
Coble, A. B., An application of the form-problems associated with certain Cremona groups to the solution of equations of higher degree	214-219 126-166 551 48- 57 205-208 389-398 263-278 331-353
E 1. Discrete Groups in General. (Cf. E 2.) Coble, A. B., An application of the form-problems associated with certain Cremona groups to the solution of equations of higher degree	214-219 126-166 551 48- 57 205-208 389-398 263-278 331-353 61- 68

Manning, W. A., The primitive groups of class 2p which con-	
tain a substitution of order p and degree $2p$	351-357
— On the primitive groups of class $3p$ 6	42-47
Groups in which a large number of operators may corre-	
spond to their inverses 7	233 - 240
— On multiply transitive groups 7	499-508
— On the order of primitive groups	247 - 258
MILLER, G. A., On the groups which are the direct products of	
two subgroups 1	66- 71
—— On the groups which have the same group of isomorphisms. 1	395 – 401
—— Determination of all the groups of order p^m which contain $\int 2$	259 – 272
the abelian groups of type $(m-2, 1)$, p being any prime 3	499 - 500
—— On the groups of order p^m which contain operators of order	
p^{m-2} 3	383 - 387
—— On the holomorph of a cyclic group 4	153-160
—— (and H. C. Moreno), Non-abelian groups in which every	
subgroup is abelian 4	398-404
—— Determination of all the groups of order 2 ^m which contain	
an odd number of cyclic subgroups of composite order 6	58 - 62
—— On the invariant subgroups of prime index 6	326 - 331
—— Groups containing only three operators which are squares 7	94- 98
—— The groups of order p^m which contain exactly p cyclic sub-	
groups of order p^a 7	228 - 232
— Generalization of the groups of genus zero	1- 13
	510
The groups in which every subgroup is either abelian or	
hamiltonian 8	25 - 29
Groups defined by the orders of two generators and the	
order of their commutator9	67– 78
— On the holomorph of the cyclic group of order p^m 9	232-236
— The central of a group 10	50- 60
—— Automorphisms of order two	471-478
Moore, Eliakim Hastings, A definition of abstract groups	485-492
Moore, Eliakim Hastings, A definition of abstract groups $\begin{cases} 3 \\ 5 \end{cases}$	549
Moreno, H. C. (and G. A. MILLER), Non-abelian groups in	
which every subgroup is abelian 4	398-404
Neikirk, L. I., Groups of order p^m , which contain cyclic sub-	040 005
groups of order p^{m-3}	316–325
RIETZ, H. L., On groups in which certain commutative opera-	
	F00 F00
tions are conjugate	500-508
	326-342
Shaw, James Byrnie, Algebras defined by finite groups	

E 2. Linear Groups in Arbitrary or Special Fields.

22. Zinea. Groupe in 11. time at y or Special 1 terral		
BLICHFELDT, H. F., On the order of linear homogeneous groups.	4	387-397
—— On the order of linear homogeneous groups (second paper).	5	310 – 325
— A theorem concerning the invariants of linear homogeneous	≺ .	461-466
groups, with some applications to substitution groups	6	546
— On imprimitive linear homogeneous groups	6	230-236
— On the order of linear homogeneous groups (supplement)	7	523 - 529
— On modular groups isomorphic with a given linear group	8	30- 32
DICKSON, LEONARD EUGENE, Definition of the abelian, the two		
hypoabelian, and related linear groups, as quotient-groups of		
the groups of isomorphisms of certain elementary groups	1	30- 38
— A new definition of the general abelian linear group	1	91- 96
—— Determination of an abstract simple group of order 27.36.5.7		
holoedrically isomorphic with a certain orthogonal group and	§ 1	353 - 370
with a certain hyperabelian group	<u>l</u> 1	509
—— Canonical forms of quaternary abelian substitutions in an		103-138
arbitrary Galois field		499
		363-394
—— Theory of linear groups in an arbitrary field	(3	500
	(3	3 8- 4 5
—— The groups of Steiner in problems of contact	(3	500
On the group defined for any given field by the multiplica-		
tion table of any given finite group	3	285 - 301
— The groups of Steiner in problems of contact (second		
paper)	3	377 - 382
— On the subgroups of order a power of p in the quaternary	(4	371-386
abelian group in the Galois field of order p^n		550-551
— On the reducibility of linear groups	4	434-436
— The subgroups of order a power of 2 of the simple quinary	(5	1- 38
orthogonal group in the Galois field of order $p^n = 8l \pm 3$		551
— Representations of the general symmetric group as linear		
groups in finite and infinite fields	9	121-148
EPSTEEN, SAUL, On reducible groups	4	249 - 250
FITE, W. B., Irreducible linear homogeneous groups whose orders		
are powers of a prime	8	107-112
—— Irreducible homogeneous linear groups in an arbitrary do-		
	10	315-318
HUTCHINSON, J. I., On automorphic groups whose coefficients		
are integers in a quadratic field	7	530-536
— A method for constructing the fundamental region of a dis-		
continuous group of linear transformations	8	261-269
Loewy, Alfred, Ueber die Reducibilität der Gruppen linearer		
homogener Substitutionen	4	44- 64
— Ueber die Reducibilität der reellen Gruppen linearer homo-		
gener Substitutionen	4	171-177
5		

 Zur Gruppentheorie mit Anwendungen auf die Theorie der linearen homogenen Differentialgleichungen Ueber die vollständig reduciblen Gruppen, die zu einer 	5	61- 80
Gruppe linearer homogener Substitutionen gehören	6	504-533
RANUM, ARTHUR, The groups of classes of congruent matrices,	Ū	001 000
with applications to the group of isomorphisms of any		
abelian group	8	71- 91
— Concerning linear substitutions of a finite period with ra-		
tional coefficients	9	183-203
Schur, I., Beiträge zur Theorie der Gruppen linearer homogener		
Substitutionen	10	159 - 175
STICKELBERGER, LUDWIG, Zur Theorie der vollständig reduciblen		
Gruppen, die zu einer Gruppe linearer homogener Substitu-		
tionen gehören	7	509-513
E 3. Continuous Groups.		
(Cf. E 2, F1, F3, G3.)		
BLICHFELDT, H. F., A new determination of the primitive con-		
tinuous groups in two variables	2	249-258
CAMPBELL, J. E., On the types of linear partial differential equa-		
tions of the second order in three independent variables which	(1	243-258
are unaltered by the transformations of a continuous group	1	509
COBLE, A. B., On the relation between the three-parameter groups		
of a cubic space curve and a quadric surface	7	1- 20
HARTWELL, G. W., Plane fields of force whose trajectories are		
invariant under a projective group	10	220–246
F. GEOMETRY.		
F1. Synthetic Geometry. Non-Euclidian Geometry. Geometry of Analysis Situs.	n d	imensions.
(Cf. D1, D2.)		
• • • • • • • • • • • • • • • • • • • •		
BLICHFELDT, H. F., On the determination of the distance be-	9	167 101
tween two points in space of <i>n</i> -dimensions	$\frac{3}{7}$	467–481 184–196
Bussey, W. H. and Veblen, O., Finite projective geometries	7	241-259
CARVER, W. B., On the Cayley-Veronese class of configuration	6	534-545
Coolinge, Julian Lowell, A purely geometric representation	U	001-010
of all points in the projective plane	1	182-192
— Quadric surfaces in hyperbolic space	4	161–170
HATHAWAY, A. S., Quaternion space	3	46- 59
LEHMER, D. N., Constructive theory of the unicursal cubic by		
synthetic methods	3	372-376
•		

Levi, Beppo, Geometrie proiettive di congruenza e geometrie		
proiettive finite	8	354-365
MASCHKE, HEINRICH, Note on the unilateral surface of Moebius.	1	39
MOORE, ELIAKIM HASTINGS, On the projective axioms of geom-	(3	142-158
etry		501
Morley, Frank, Projective coördinates	4	288-296
Moulton, Forest Ray, A simple non-desarguesian plane geom-		
etry	3	192-195
PEIRCE, J. M., On certain complete systems of quaternion expres-		
sions, and on the removal of metric limitations from the		
calculus of quaternions	5	411-420
SNYDER, VIRGIL, Surfaces derived from the cubic variety having		
	10	71- 78
STRINGHAM, IRVING, On the geometry of planes in a parabolic		
space of four dimensions	2	183-214
VEBLEN, OSWALD, A system of axioms for geometry	5	343-384
Theory of plane curves in non-metrical analysis situs	6	8 3- 98
— (and W. H. Bussey), Finite projective geometries	7	241-259
Collineations in a finite projective geometry	8	366-368
F 2. Algebraic Geometry; Algebraic Curves and Surfa	ces.	
(Cf. B 2, D 3, E 2, F 1, F 4, F 5.)		
ALLARDICE, R. E., On the envelope of the axes of a system of		
conics passing through three fixed points	4	103-106
BROMWICH, T. J. I'a., Similar conics through three points	4	489-492
—— The classification of quadrics	6	275-285
COBLE, A. B., The quartic curve as related to conics	4	65- 85
DENTON, WILLIAM WELLS, On the osculating quartic of a plane		
curve	10	297-308
FIELD, PETER, On the form of a plane quintic curve with five		
cusps	7	26- 32
GALE, ARTHUR SULLIVAN, On the rank, order and class of alge-		
braic minimum curves	3	451-466
Hun, John Gale, On certain invariants of two triangles	5	39- 55
LOUD, FRANK H., Sundry metric theorems concerning n-lines in		
a plane	1	323-338
MACAULAY, F. S., On a method of dealing with the intersections		
of plane curves	5	385-410
Morley, Frank, On the metric geometry of the plane n-line	1	97–115
— Orthocentric properties of the plane n-line	4	1- 12
— On the geometry whose element is the 3-point of a plane	5	467-476
— On reflexive geometry	8	14- 24
PORTER, M. B., Sets of coincidence points on the non-singular		
outling of a grangetic sheef	9	97 49

ROEVER, W. H., Brilliant points of curves and surfaces	9 24	5–279
Scott, C. A., On a recent method for dealing with the intersec-		
tions of plane curves		6-263
—— On the circuits of plane curves	3 38	8-398
— Note on the real inflexions of plane curves	3 39	9-400
STEPHENS, R. P., On the pentadeltoid	7 20	7-227
WHITE, HENRY S., Conics and cubics connected with a plane		
-	1	1- 8
•		0-181
—— Plane cubics and irrational covariant cubics $\left\{ \right.$	1 11	508
On twisted cubic curves that have a directrix	4 13	4-141
F 3. Geometry of Special Space-Elements.		
Kasner, E., On the point-line as element of space; a study of [3–233
the corresponding bilinear connex	5	550
Morley, Frank, On the geometry whose element is the 3-point		
	5 46'	7-476
SMITH, PERCEY F., On surfaces enveloped by spheres belonging		
	1 37	1-390
		4-248
—— Geometry within a finear spherical complex	2 20	1-210
F 4. Differential Geometry.		
(Cf. D 6.)		
(01, 2 0,)		
· · · ·	3 35	4-371
EISENHART, LUTHER PFAHLER, Conjugate rectilinear congruences		4 –371 0–488
EISENHART, LUTHER PFAHLER, Conjugate rectilinear congruences —— Congruences of curves	4 47	0-488
EISENHART, LUTHER PFAHLER, Conjugate rectilinear congruences —— Congruences of curves	4 470 5 42	0–488 1–437
EISENHART, LUTHER PFAHLER, Conjugate rectilinear congruences —— Congruences of curves	4 470 5 421 6 471	0–488 1–437 2–485
EISENHART, LUTHER PFAHLER, Conjugate rectilinear congruences — Congruences of curves	4 470 5 421 6 471 8 113	0–488 1–437 2–485 3–134
EISENHART, LUTHER PFAHLER, Conjugate rectilinear congruences — Congruences of curves	4 470 5 421 6 471 8 113	0–488 1–437 2–485
EISENHART, LUTHER PFAHLER, Conjugate rectilinear congruences — Congruences of curves	4 470 5 421 6 471 8 113 8	0–488 1–437 2–485 3–134 535
EISENHART, LUTHER PFAHLER, Conjugate rectilinear congruences — Congruences of curves	4 470 5 421 6 471 8 113 8	0–488 1–437 2–485 3–134
EISENHART, LUTHER PFAHLER, Conjugate rectilinear congruences — Congruences of curves	4 470 5 421 6 471 8 113 8	0–488 1–437 2–485 3–134 535
EISENHART, LUTHER PFAHLER, Conjugate rectilinear congruences — Congruences of curves. — Three particular systems of lines on a surface — Surfaces of constant curvature and their transformations — Applicable surfaces with asymptotic lines of one surface { corresponding to a conjugate system of another	4 470 5 42 6 47: 8 11: 8	0–488 1–437 2–485 3–134 535
EISENHART, LUTHER PFAHLER, Conjugate rectilinear congruences — Congruences of curves. — Three particular systems of lines on a surface. — Surfaces of constant curvature and their transformations — Applicable surfaces with asymptotic lines of one surface { corresponding to a conjugate system of another	4 470 5 42 6 47: 8 11: 8	0-488 1-437 2-485 3-134 535 9-177
EISENHART, LUTHER PFAHLER, Conjugate rectilinear congruences — Congruences of curves	4 470 5 42 6 473 8 113 8 9 144 6 450	0-488 1-437 2-485 3-134 535 9-177 0-471
EISENHART, LUTHER PFAHLER, Conjugate rectilinear congruences — Congruences of curves	4 4775 42266 47788 11388 9 14496 456	0-488 1-437 2-485 3-134 535 9-177 0-471
EISENHART, LUTHER PFAHLER, Conjugate rectilinear congruences — Congruences of curves	4 4775 42266 47788 11388 9 14496 450 2 884 1449	0-488 1-437 2-485 3-134 535 9-177 0-471 7-99 9-152
EISENHART, LUTHER PFAHLER, Conjugate rectilinear congruences — Congruences of curves — Three particular systems of lines on a surface — Surfaces of constant curvature and their transformations — Applicable surfaces with asymptotic lines of one surface { corresponding to a conjugate system of another	4 470 5 422 6 47: 8 11: 8 9 14: 6 450 2 8' 4 14: 5	0-488 1-437 2-485 3-134 535 9-177 0-471 7-99 9-152 550
EISENHART, LUTHER PFAHLER, Conjugate rectilinear congruences — Congruences of curves. — Three particular systems of lines on a surface. — Surfaces of constant curvature and their transformations — Applicable surfaces with asymptotic lines of one surface { corresponding to a conjugate system of another. — Surfaces with isothermal representation of their lines of curvature and their transformations. EIESLAND, JOHN, On a certain system of conjugate lines on a surface connected with Euler's transformation. HILBERT, DAVID, Ueber Flächen von constanter Gaussscher Krümmung. KASNER, EDWARD, The generalized Beltrami problem concerning { geodesic representation	4 470 5 422 6 47: 8 11: 8 9 14: 6 450 2 8' 4 14: 5	0-488 1-437 2-485 3-134 535 9-177 0-471 7-99 9-152
EISENHART, LUTHER PFAHLER, Conjugate rectilinear congruences — Congruences of curves. — Three particular systems of lines on a surface. — Surfaces of constant curvature and their transformations — Applicable surfaces with asymptotic lines of one surface { corresponding to a conjugate system of another	4 470 5 422 6 473 8 113 8 9 143 6 450 2 83 4 143 5 5	0-488 1-437 2-485 3-134 535 9-177 0-471 7-99 9-152 550 6-60
EISENHART, LUTHER PFAHLER, Conjugate rectilinear congruences — Congruences of curves. — Three particular systems of lines on a surface. — Surfaces of constant curvature and their transformations — Applicable surfaces with asymptotic lines of one surface { corresponding to a conjugate system of another	4 470 5 422 6 473 8 113 8 9 149 6 450 2 83 4 149 5 5 50 6 143	0-488 1-437 2-485 3-134 535 9-177 0-471 7- 99 9-152 550 6- 60 1-158
EISENHART, LUTHER PFAHLER, Conjugate rectilinear congruences — Congruences of curves. — Three particular systems of lines on a surface. — Surfaces of constant curvature and their transformations. — Applicable surfaces with asymptotic lines of one surface { corresponding to a conjugate system of another. — Surfaces with isothermal representation of their lines of curvature and their transformations. EIESLAND, JOHN, On a certain system of conjugate lines on a surface connected with Euler's transformation. HILBERT, DAVID, Ueber Flächen von constanter Gaussscher Krümmung. KASNER, EDWARD, The generalized Beltrami problem concerning { geodesic representation. — Isothermal systems of geodesics. — Surfaces whose geodesics may be represented in the plane by parabolas. — The problem of partial geodesic representation.	4 470 5 422 6 477 8 113 8 9 143 6 450 2 83 4 143 5 5 50 6 144 7 200	0-488 1-437 2-485 3-134 535 9-177 0-471 7- 99 9-152 550 6- 60 1-158 0-206
EISENHART, LUTHER PFAHLER, Conjugate rectilinear congruences — Congruences of curves	4 470 5 422 6 477 8 113 8 113 9 143 6 450 2 83 4 143 5 5 60 6 144 7 200 3 483	0-488 1-437 2-485 3-134 535 9-177 0-471 7- 99 9-152 550 6- 60 1-158 0-206 2-484
EISENHART, LUTHER PFAHLER, Conjugate rectilinear congruences — Congruences of curves. — Three particular systems of lines on a surface. — Surfaces of constant curvature and their transformations — Applicable surfaces with asymptotic lines of one surface { corresponding to a conjugate system of another. — Surfaces with isothermal representation of their lines of curvature and their transformations. EIESLAND, JOHN, On a certain system of conjugate lines on a surface connected with Euler's transformation. HILBERT, DAVID, Ueber Flächen von constanter Gaussscher Krümmung. KASNER, EDWARD, The generalized Beltrami problem concerning { geodesic representation. — Isothermal systems of geodesics. — Surfaces whose geodesics may be represented in the plane by parabolas. — The problem of partial geodesic representation. MASCHKE, Heinrich, On superosculating quadric surfaces. — The Kronecker-Gaussian curvature of hyperspace.	4 4775 42266 47788 11388 9 14456 456 456 5 56 6 14477 200 3 4837 8.	0-488 1-437 2-485 3-134 535 9-177 0-471 7- 99 9-152 550 6- 60 1-158 0-206 2-484 1- 93
EISENHART, LUTHER PFAHLER, Conjugate rectilinear congruences — Congruences of curves	4 4775 42266 47788 11388 9 14456 456 456 5 56 6 14477 200 3 4837 8.	0-488 1-437 2-485 3-134 535 9-177 0-471 7- 99 9-152 550 6- 60 1-158 0-206 2-484

Poincaré, Henri, Sur les lignes géodésiques des surfaces convexes 6	237-274
SMITH, A. W., The symbolic treatment of differential geometry 7	33 - 60
STÄCKEL, PAUL, Die kinematische Erzeugung von Minimalflächen 7	293-313
STECKER, HENRY FREEMAN, On the determination of surfaces	
capable of conformal representation upon the plane in such	
a manner that geodetic lines are represented by algebraic (2	152-165
curves	486
Concerning the existence of surfaces capable of conformal	
representation upon the plane in such a manner that geodetic	
lines are represented by a prescribed system of curves 3	12- 22
STROMQUIST, C. E., On geometries in which circles are the shortest	
lines 7	175-183
Study, Eduard, Zur Differentialgeometrie der analytischen	
Curven	1- 49
WILCZYNSKI, E. J., Geometry of a simultaneous system of two	
linear homogeneous differential equations of the second (2	343-362
order	500
Reciprocal systems of linear differential equations 3	60- 70
— Covariants of systems of linear differential equations and	
applications to the theory of ruled surfaces 3	423-450
— On a certain congruence associated with a given ruled (4	185-200
surface	550
—— Studies in the general theory of ruled surfaces 5	226-252
— On ruled surfaces whose flecnode curve intersects every	
generator in two coincident points 5	438-446
— General theory of curves on ruled surfaces 6	75-82
— General projective theory of space curves 6	99-133
Projective differential geometry of curved surfaces (first	
memoir)	23 3–260
—— (Second memoir) 9	79–120
—— (Third memoir)	293-315
—— (Fourth memoir)	176-200
——— (Fifth memoir) 10	279-296
Young, Archer Everett, On certain isothermic surfaces 8	415-426
— On a certain class of isothermic surfaces	79-94
F5. Geometric Transformation. Geometry of Motion.	
(Cf. E 2.)	
BLAKE, E. M., Two plane movements generating quartic scrolls 1	421–429
COOLIDGE, JULIAN LOWELL, The equilong transformations of	
space	178–182
EIESLAND, JOHN, On a certain system of conjugate lines on a	
surface connected with Euler's transformation 6	450-471

EMCH, ARNOLD, Algebraic transformations of a complex variable	409 409
realized by linkages	493–498
jectories are invariant under a projective group 10	220-246
HASKELL, M. W., The resolution of any collineation into per-	0.01 0.00
Spective reflections	361–369
the transformations of a non-singular bilinear form into	
itself 10	479-484
Wilson, Edwin B., The decomposition of the general collineation of space into three skew reflections	193–196
—— Oblique reflections and unimodular strains	270-298
Wright, J. E., Correspondences and the theory of groups 7	391-400
G. APPLIED MATHEMATICS.	
G 1. General Mechanics.	
Brown, Ernest William, On the variation of the arbitrary and	
given constants in dynamical equations	333-350
— On a general method for treating transmitted motions and	
its application to indirect perturbations 6	332–343
CHESSIN, ALEXANDER S., On relative motion	116–169
GRIFFIN, FRANK LOXLEY, Certain periodic orbits of k finite	1 00
bodies revolving about a relatively large central mass 9	1- 33
Kasner, Edward, The trajectories of dynamics	401–424
trary field of force	135–158
— Natural families of trajectories: conservative fields of 10	201–219
force	510
Longley, William Raymond, A class of periodic orbits of an § 8	159-188
infinitesimal body subject to the attraction of n finite bodies (8)	535
LOVETT, E. O., On a problem including that of several bodies	
and admitting of an additional integral 6	491–495
Moulton, Forest Ray, A class of periodic solutions of the prob-	
lem of three bodies with applications to the lunar theory 7	537–577
G 2. Celestial Mechanics.	
Brown, Ernest William, On the small divisors in the lunar	
theory 3	159–185
—— On the formation of the derivatives of the lunar coördinates	
with respect to the elements 4	234–248
—— On the variation of the arbitrary and given constants in	222 27
dynamical equations4	333-350
—— On the smaller perturbations of the lunar arguments $\begin{cases} 5 \\ 5 \end{cases}$	279 – 287
——On the smaller perturbations of the funar arguments	551

Hill, G. W., On the extension of Delaunay's method in the {1 lunar theory to the general problem of planetary motion {1	205–242 508–509
Moulton, Forest Ray, On a class of particular solutions of the $\begin{cases} 1\\ 3\\ 5 \end{cases}$	17- 29 499 549
REED, FRANK WALKER, On singular points in the approximate	0 2.0
development of the perturbative function	485–509
G 3. Elasticity, Hydromechanics and Sound.	
DARWIN, G. H., The approximate determination of the form of	
Maclaurin's spheroid. 4	113-133
— Further note on Maclaurin's spheroid 9	34- 38
HADAMARD, J., La théorie des plaques élastiques planes 3	401-422
Sharpe, F. R., On the stability of the motion of a viscous liquid 6	496-503
WILCZYNSKI, E. J., An application of group theory to hydro- 1	339 - 352
${\bf dynamics} \ \ 1$	509
Wilson, Edwin Bidwell, On the differential equations of the	
equilibrium of an inextensible string	425–439
G 4. Electricity, Light, and Heat.	
GREENHILL, ALFRED GEORGE, The elliptic integral in electromag-	
netic theory 8	447–534
Pupin, M. I., Wave propagation over non-uniform electrical § 1	259 – 286
conductors 1	509